Руководство по эксплуатации: Золотое сечение. Почему в природе часто встречается золотое сечение? Золотое сечение в природе архитектуре классике

В биологических исследованиях 70-90 гг. ХХ в. показано, что, начиная с вирусов и растений и кончая организмом человека, всюду выявляется золотая пропорция, характеризующая соразмерность и гармоничность их строения.

Все живое приобретает какую-то форму, образовывается, растёт, стремится занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах – рост вверх или расстилание по поверхности земли и закручивание по спирали.

Равноугольная спираль получается при вписывании в каждый из квадратов золотого прямоугольника четверти окружности. Равноугольная спираль напоминает раковину улитки. Красивая форма раковины обусловлена тем, что её сегменты, представляющие собой дуги окружностей, имеют разные размеры, но их форма одинакова. На примере раковины улитки можно увидеть соблюдение важного принципа её строения: размеры её секреций возрастают, а их форма не изменяется.

Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

Хорошо известна золотая пропорция пятилепестковых цветков яблони, груши и многих других растений. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы.

Цветки и семена подсолнуха, ромашки, чешуйки в плодах ананаса, хвойных шишках «упакованы» «золотыми» спиралями, завивающимся навстречу друг другу.

Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Стадо испуганных северных оленей разбегается по спирали. Рога горных козлов закручиваются по золотой спирали. Носители генетического кода - молекулы ДНК и РНК - имеют структуру двойной спирали; ее размеры почти полностью соответствуют числам ряда Фибоначчи. Гете называл спираль «кривой жизни».

Среди придорожных трав растет ничем не примечательное растение – цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

Золотое сечение — это универсальное проявление структурной гармонии

Оно встречается в природе, науке, искусстве – во всем, с чем может соприкоснуться человек. Однажды познакомившись с золотым правилом, человечество больше ему не изменяло.

Определение золотого сечения

Наиболее емкое определение золотого сечения гласит, что меньшая часть относится к большей, как большая — ко всему целому. Приблизительная его величина – 1,6180339887. В округленном процентном значении пропорции частей целого будут соотноситься как 62% на 38%. Это соотношение действует в формах пространства и времени.

Древние видели в золотом сечении отражение космического порядка, а Иоганн Кеплер называл его одним из сокровищ геометрии. Современная наука рассматривает золотое сечение как «ассиметричную симметрию», называя его в широком смысле универсальным правилом, отражающим структуру и порядок нашего мироустройства.

История золотого сечения

Представление о золотых пропорциях имели древние египтяне, знали о них и на Руси, но впервые научно золотое сечение объяснил монах Лука Пачоли в книге «Божественная пропорция» (1509), иллюстрации к которой предположительно сделал Леонардо да Винчи. Пачоли усматривал в золотом сечении божественное триединство: малый отрезок олицетворял Сына, большой – Отца, а целое – Святой дух.

Непосредственным образом с правилом золотого сечения связано имя итальянского математика Леонардо Фибоначчи. В результате решения одной из задач учёный вышел на последовательность чисел, известную сейчас как ряд Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. На отношение этой последовательности к золотой пропорции обратил внимание Кеплер: «Устроена она так, что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности». Сейчас ряд Фибоначчи — это арифметическая основа для расчетов пропорций золотого сечения во всех его проявлениях.

Леонардо да Винчи также много времени посвятил изучению особенностей золотого сечения, скорее всего, именно ему принадлежит и сам термин. Его рисунки стереометрического тела, образованного правильными пятиугольниками, доказывают, что каждый из полученных при сечении прямоугольников даёт соотношения сторон в золотом делении.

Со временем правило золотого сечения превратилось в академическую рутину, и только философ Адольф Цейзинг в 1855 году вернул ему вторую жизнь. Он довёл до абсолюта пропорции золотого сечения, сделав их универсальными для всех явлений окружающего мира. Впрочем, его «математическое эстетство» вызывало много критики.

Золотое сечение в природе

Даже не вдаваясь в расчеты, золотое сечение можно без труда обнаружить в природе. Так, под него попадают соотношение хвоста и тела ящерицы, расстояния между листьями на ветке, есть золотое сечение и в форме яйца, если условную линию провести через его наиболее широкую часть.

Белорусский ученый Эдуард Сороко, который изучал формы золотых делений в природе, отмечал, что все растущее и стремящееся занять своё место в пространстве, наделено пропорциями золотого сечения. По его мнению, одна из самых интересных форм это закручивание по спирали.

Еще Архимед, уделяя внимание спирали, вывел на основе её формы уравнение, которое и сейчас применяется в технике. Позднее Гёте отмечал тяготение природы к спиральным формам, называя спираль «кривой жизни». Современными учеными было установлено, что такие проявления спиральных форм в природе как раковина улитки, расположение семян подсолнечника, узоры паутины, движение урагана, строение ДНК и даже структура галактик заключают в себе ряд Фибоначчи.

Золотое сечение и человек

Модельеры и дизайнеры одежды все расчёты делают, исходя из пропорций золотого сечения. Человек – это универсальная форма для проверки законов золотого сечения. Конечно, от природы далеко не у всех людей пропорции идеальны, что создает определенные сложности с подбором одежды.

В дневнике Леонардо да Винчи есть рисунок вписанного в окружность обнажённого человека, находящегося в двух наложенных друг на друга позициях. Опираясь на исследования римского архитектора Витрувия, Леонардо подобным образом пытался установить пропорции человеческого тела. Позднее французский архитектор Ле Корбюзье, используя «Витрувианского человека» Леонардо, создал собственную шкалу «гармонических пропорций», повлиявшую на эстетику архитектуры XX века.

Адольф Цейзинг, исследуя пропорциональность человека, проделал колоссальную работу. Он измерил порядка двух тысяч человеческих тел, а также множество античных статуй и вывел, что золотое сечение выражает среднестатистический закон. В человеке ему подчинены практически все части тела, но главный показатель золотого сечения это деление тела точкой пупа.

В результате измерений исследователь установил, что пропорции мужского тела 13:8 ближе к золотому сечению, чем пропорции женского тела – 8:5.

Искусство пространственных форм

Художник Василий Суриков говорил, «что в композиции есть непреложный закон, когда в картине нельзя ничего ни убрать, ни добавить, даже лишнюю точку поставить нельзя, это настоящая математика». Долгое время художники следовали этому закону интуитивно, но после Леонардо да Винчи процесс создания живописного полотна уже не обходится без решения геометрических задач. Например, Альбрехт Дюрер для определения точек золотого сечения использовал изобретённый им пропорциональный циркуль.

Искусствовед Ф. В. Ковалев, подробно исследовав картину Николая Ге «Александр Сергеевич Пушкин в селе Михайловском», отмечает, что каждая деталь полотна, будь то камин, этажерка, кресло или сам поэт, строго вписаны в золотые пропорции.

Исследователи золотого сечения без устали изучают и замеряют шедевры архитектуры, утверждая, что они стали таковыми, потому что созданы по золотым канонам: в их списке Великие пирамиды Гизы, Собор Парижской Богоматери, Храм Василия Блаженного, Парфенон.

И сегодня в любом искусстве пространственных форм стараются следовать пропорциям золотого сечения, так как они, по мнению искусствоведов, облегчают восприятие произведения и формируют у зрителя эстетическое ощущение.

Слово, звук и кинолента

Формы временного искусства по-своему демонстрируют нам принцип золотого деления. Литературоведы, к примеру, обратили внимание, что наиболее популярное количество строк в стихотворениях позднего периода творчества Пушкина соответствует ряду Фибоначчи – 5, 8, 13, 21, 34.

Действует правило золотого сечения и в отдельно взятых произведениях русского классика. Так кульминационным моментом «Пиковой дамы» является драматическая сцена Германа и графини, заканчивающаяся смертью последней. В повести 853 строки, а кульминация приходится на 535 строке (853:535=1,6) – это и есть точка золотого сечения.

Советский музыковед Э. К. Розенов отмечает поразительную точность соотношений золотого сечения в строгих и свободных формах произведений Иоганна Себастьяна Баха, что соответствует вдумчивому, сосредоточенному, технически выверенному стилю мастера. Это справедливо и в отношении выдающихся творений других композиторов, где на точку золотого сечения обычно приходится наиболее яркое или неожиданное музыкальное решение.

Кинорежиссер Сергей Эйзенштейн сценарий своего фильма «Броненосец Потёмкин» сознательно согласовывал с правилом золотого сечения, разделив ленту на пять частей. В первых трех разделах действие разворачивается на корабле, а в последних двух – в Одессе. Переход на сцены в городе и есть золотая середина фильма.

Просмотры: 1 557

Примеры золотого сечения в архитектуре найти можно везде, когда умеешь его видеть. Выяснить это даже школьнику по силам. В 2013 году ученица 10 класса Сивакова Елена провела собственное исследование зданий 19-20 веков. Проследим, как она это сделала, и научимся видеть и определять его в архитектурных сооружениях за 5 минут. После прочтения статьи не останется вопросов о том, что это такое, и можно ли его необычные свойства использовать в своей жизни.

7+ примеров золотого сечения в архитектуре России

Санкт-Петербург

Здания исторического центра Санкт-Петербурга построены в разных , таких как барокко, ампир, эклектика, необарокко, неоготика. Подчиняются ли они золотому правилу?

Исаакиевский собор

Придворный архитектор Александра I Огюст Монферран строил этот собор с 1819 по 1858 гг. Стиль позднего , в котором уже проявлены черты неоренессанса и эклектики. Елена задалась вопросом: «В чём же причина гармонии довольно громоздкого здания?»

Первый ряд определён шириной здания, которая принята за 400 ед. и представляет такие цифры 400, 247, 153, 94, 58…

Если 400 разделим на число ≈1,618, то получим приблизительно 247; повторяем действие со следующим числом: 247: 1.618≈153.

И так находим все числа. Теперь смотрим на рисунок. Основная часть с колоннами вписывается в прямоугольник со сторонами 400 и 247. Поскольку стороны находятся в соотношении Ф≈1.618, то они образуют Золотой прямоугольник.

Следующий ряд представлен высотой здания: 370, 228, 140, 87, 53, 33, 20, 12. Эти размеры заложены в более мелкие детали. По вертикали Исаакиевский собор делится Золотым сечением у основания купола, что делает соотношение основной части и купола гармоничным.

Третий ряд размеров начинается со 113, и являет ширину основания главного купола: 113, 69, 42, 26, 16. Числа этого ряда встречаются в размерах окон, в высотах колонн и других деталей собора.

Золотые прямоугольный и равнобедренный треугольники имеют место в здании Исаакиевского собора, как видно из рисунка.

Кунсткамера

На Университетской набережной Васильевского острова стоит здание Кунсткамеры, заложенное в 1718 году под руководством немецкого архитектора Георга Маттарнови: Петровское барокко, два 3-этажных корпуса и сложная многоярусная купольная башня.

Исследование начинается с главных величин: высоты и длины здания, от которых строится золотой ряд. Длина — 450 ед., далее 277, 170, 105, 65, 40, 24. Такие размеры можно видеть в высоте и широте разных уровней башни, длине корпусов. Сама башенная часть вписана в золотой равнобедренный треугольник от основания до вершины. Золотое сечение просматривается в большей степени именно в этом главном элементе, что правильно с точки зрения архитектуры. Вывод: основа Кунсткамеры подчиняется золотому правилу и сохраняет композиционную гармоничность.

Новый золотой ряд начинает высота здания: 211, 130, 80, 49, 30. Глядя на размеры чертежа, становиться понятно, что выбор трёхэтажного вида корпусов обусловлен соразмерностью с башней.

Торговый дом «Эсдерс и Схейфальс» на пересечении Мойки и Гороховой

Построено в 1907 году по проекту Владимира Александровича Липского и Константина Николаевича де Рошефора (Рошфора). В 1905 г. бельгиец С. Эсдерс и нидерландец Н. Схейфальс подали прошение о разрешении построить пятиэтажное здание с куполом и шпилем на угловой башне для их торгового дома вместо старого.

С длины здания в 671 ед. начинается ряд Золотого сечения, наблюдаемого в размерах: 671, 414, 256, 158, 98, 60, 37, 23. Обращаем внимание на основной элемент — шпиль. Убеждаемся, что композиционное решение завершено гармоничным сочетанием высотных величин.

Построен в 1941г по проекту Ноя Абрамовича Троцкого. Здание советского периода рассматривают как творческую интерпретацию . Центральный портик с четырнадцатью колоннами завершает скульптурный ансамбль на тему строительства социализма и гербом Российской Советской Федеративной Социалистической Республики.

По бокам симметрично расположены пятиэтажные корпуса. Длина Дома достигает 1472 ед., из которого методом деления на число Ф получается ряд размеров элементов здания: 1472, 909, 562, 34, 214, 132, 81, 50 (Приложение 21): высоты сооружения, высоты входа и др.

Вершина Золотого равнобедренного треугольника совпадает с вершиной здания, а его стороны проходят через вехние точки главного входа. Прямоугольный золотой треугольник образован вершинами в верхушке здания и в конце внутренней части бокового крыла. Пропорциональность очевидна, хотя и не имеет большой композиционной значимости.

Москва

Московский Государственный Университет на Воробьёвых горах

Над его проектом работал коллектив под управлением Б.М.Иофана, которого позже сместили с должности главного архитектора. Образец послевоенной советской архитектуры выстроен с 1949 по 1953 годы.

Б.М.Иофан предложил композицию из пяти составляющих с центральной башней. В годы строительства это было самое высокое здание в Европе.

Длина здания равна 1472 ед. и начинает ряд: 909, 562, 347, 214, 132, 81, 50. Золотому сечению подчиняются, в основном высотные размеры. Из ширины башни проистекает другой ряд: 538, 332, 205, 126, который видим в широтных размерах.

Золотой прямоугольный треугольник гипотенузой проходит через угол здания и захватывает пристройки.

Таким образом, во всех исследуемых зданиях ученица обнаружила Золотое сечение, сохраняющее гармонию.

5 примеров дополнительно

Чтобы упростить задачу поиска ЗС, можно брать рациональные дроби 3/2; 5/3; 8/5; 13/8; 21/13; 34/21; 55/34; 89/55; и так дальше. Закономерность ясна: 3+2 =5; 5+3=8; 8+5=13… Или ещё проще. Сделайте себе циркуль для определения пропорции по инструкции в видео. Времени уйдет минут 10. Как пользоваться этим циркулем для определения пропорциональности элементов тоже расскажут и покажут.

Применяя этот способ, находим золотую пропорцию русского зодчего Матвея Казакова в кремлёвском здании сената, да и во всех остальных работах: Пречистенском дворце в Москве, Благородном собрании, Голицынской больнице (им. Пирогова)…

Созданный другим великим архитектором Василием Ивановичем Баженовым дом Пашкова в Москве (Российская государственная библиотека) причисляют к образцам совершенных архитектурных памятников, в котором легко определить ЗС.

Ужасный символ Парижа и золотое сечение

Когда в Париже собирали металлическую Эйфелеву башню, многие французы возмущались. Критики писали о ней, как об «уродстве города», «сраме Парижа», «тощей пирамиде из металлических лестниц». В их числе были Эмиль Золя, Дюма-младший, Ги де Мопассан. Сейчас этот самый посещаемый памятник является гордостью парижан. Может быть виной тому «божественная» пропорция?

Она же наблюдается и самом знаменитом французском соборе Нотр-Дам-Де-Пари.

Вся правда о древних строителях

Интуитивно или сознательно великие архитекторы строили здания с учётом этих пропорций? Античные математики знали о золотом сечении со времён Пифагора. Находятся всё новые подтверждения его применения в архитектурных пропорциях. Однако не найти ни одной древней записи с прямой рекомендацией использовать “божественную пропорцию”. Нет таковой и у Витрувия (I век до н. э.), написавшего «Десять книг об архитектуре», в которых он рассматривал пропорциональности в том числе. Странный факт, не правда ли?

Может все выше приведённые исследования являются подгонкой под известный результат? Не так сложно выбрать из множества архитектурных элементов те, которые подтверждают гипотезу, т. к. абсолютной точности никто не требует. Логично задуматься над вопросом: «Что если греки НЕ применяли золотое сечение?»

Собственно говоря, и для Луки Пачоли, написавшего в 1509 году труд «Божественная пропорция», не столь важно было его прикладное значение. Важно было обосновать её мистическую природу. А применять его осознанно стали только с момента издания книги.

Тайна архитектуры Древней Греции

Красивые и гармоничные объекты всегда отвечают правилу ЗС, а при анализе величин определяется эта пропорциональность. Искусствоведы внимательно изучили греческий Парфенон, возведённый в честь победы над персами — храм богини Афины. Отношение длины храма к ширине даёт золотое число с маленькой погрешностью. Если отнять от длины сооружения 14 см и прибавить к ширине, то получится полное совпадение с математической величиной. Фасад здания немного сужается кверху, отклоняется от прямоугольной формы. Учитывая визуальное восприятие, сделано это строителями сознательно. Поэтому считать его прямоугольником золотого сечения не совсем корректно. Но пропорции соблюдаются, так что логично предположить, что архитекторы Иктин и Калликрат умышленно заложили правило в проект?

Мифы и диковинные факты о пирамиде

Пирамида Хеопса также выстроена с учётом этого условия. Не вдаваясь в математическое доказательство наличия золотой формулы, скажем только, что в нём присутствуют прямоугольный золотой треугольник, сторонами которого являются высота и половина стороны основания строения. Ничего удивительного?

Но тогда возникает вопрос об уровне древнеегипетской математики. Выходит, что теорема Пифагора была им известна за два тысячелетия до рождения самого учёного. Внимание привлекает факт, что наследники Хеопса строили свои пирамиды уже с другими пропорциями. Почему?

Установлено, что сооружения пирамидальной формы с ЗС оказывают на находящихся в них феноменальное воздействие: растения лучше растут, металлы становятся прочнее, вода долго остаётся свежей. Учёные много лет работают с этими загадками, но тайна остаётся.

Замечено, что пирамида приводит структуру пространства в слаженное состояние. Всё, что попадает в зону действия, тоже организуется подобным образом: психоэмоциональное состояние людей улучшается, вредные для человека излучения уменьшаются, исчезают геопатогенные зоны. Интернет утверждает, что если размер фигуры увеличивается в два раза, то влияние пирамиды усиливается в сто раз.

Как же всё-таки построить «Золотой» дом для себя?

Правильное распределение энергий внутри дома, гармоничные конструкции в сочетании с экологией и безопасностью строительных материалов побуждают современных архитекторов и дизайнеров использовать принципы и понятия Золотого сечения. Это увеличивает смету и создаёт впечатление глубокой проработки проекта. Стоимость возрастает на 60-80%.

Для талантливых художников и архитекторов правило сохраняется интуитивно во время творческого процесса. Однако некоторые из них сознательно реализуют это положение.

В природе подобная соразмерность встречается везде. Тот, кто чувствует гармонию пространства, создаст пропорциональное здание без специальных для этого усилий.

Например, наши предки строили хоромы соразмерные человеку. Мерили высоту и длину в саженях, локтях, аршинах, пядях. Никто не возражает, что в человеческом теле соблюдена золотая пропорция? Длина руки от кончиков пальцев до подмышки относится к расстоянию от той же точки до локтя как эта величина к размеру ладони.

Известный французский архитектор Ле Корбюзье для расчёта параметров будущего дома и интерьера использовал в качестве отправной единицы рост хозяина. Все его работы по-настоящему индивидуальны и гармоничны.

5 способов соблюдать правило в интерьере

  1. В доме, построенном без учёта соотношения, можно сделать перепланировку комнат, чтобы пропорции соответствовали.
  2. Иногда достаточно переставить мебель или сделать дополнительную перегородку.
  3. Аналогичным образом меняется высота и длина окон и дверей.
  4. В цветовом оформлении получение упрощённого соотношения достигается за счёт 60% основного цвета, 30% - оттеняющего, и остальных 10% - усиливающих восприятие тонов.
  5. Высота и длина мебели должна соизмеряться высотой потолков и шириной простенков.

Приложение этой нормы в , как архитектурно оформленном пространстве, объединяют с понятиями самоорганизации, рекурсии, асимметрии, красоты.

О золотом сечении простыми словами

Что же это такое? Отрезки золотой пропорции выражаются бесконечной иррациональной дробью, десятичное значение которой равно приближённо числу Ф≈1,618 или Ф≈1,62. Другими словами: если берём целое и делим его на две части так, что одна из них составляет 62%, а другая - 38%, получаем Золотую пропорцию.

Золотой прямоугольник: когда длину большей стороны делим на длину меньшей и получаем число Ф. При делении меньшей на большую получается обратное значение φ ≈ 0,618.

Золотой равнобедренный треугольник: если отношение размера одной боковой стороны и размера основания составляет золотое число Ф; угол между равными сторонами равен 36°.

Золотой прямоугольный треугольник Кеплера объединяет в себе теорему Пифагора и ЗС: соотношение квадратов его сторон составляет 1,618.

Смотрите познавательное видео по теме

Яковлева Алёна

Цель работы – изучить понятие Золотое сечение, рассмотреть, как Золотое сечение используется природой.

В реферате подробно рассматриваются понятия Золотого сечения, Золотого прямоугольника, Золотой спирали и их применение в природе. Описываются исследования, проведенные в классе.

Скачать:

Предварительный просмотр:

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа №48»

ГОРОДСКАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ

Секция: математика, биология

«Золотое сечение в природе».

МОУ г.Кургана «СОШ №48»,

8 «Б» класс.

Научные руководители: Якущенко

Татьяна Александровна

Учитель биологии,

МОУ г.Кургана «СОШ №48»,

Баева Лилия Николаевна,

МОУ г.Кургана «СОШ №48»,

Учитель математики.

Курган,

2010 г.

  1. Введение стр. 3
  2. Понятие Золотого сечения стр.5
  3. История Золотого сечения стр. 5
  4. Золотой прямоугольник стр.7
  5. Золотая спираль стр.8
  6. Золотые спирали в живой природе стр.9
  7. Вездесущий филлотаксис стр.10
  8. Золотое сечение в природе стр.11
  9. Золотые пропорции в теле человека стр.12
  10. Мои исследования стр.13
  11. Заключение стр.13
  12. Приложение стр. 16
  13. Список литературы стр.15

Введение. О живой и неживой природе.

Природа, понимаемая как весь мир в многообразии его форм, состоит как бы из двух частей: живая и неживая природа. В чем различие между ними? Для творений неживой природы характерна высокая устойчивость, слабая изменчивость, если судить в масштабах человеческой жизни. Человек рождается, живет, стареет, умирает, а гранитные горы (прил. 1) остаются такими же и планеты вращаются вокруг Солнца так же, как и во времена Пифагора.

Мир живой природы предстает перед нами совсем иным - подвижным, изменчивым и удивительно разнообразным. Жизнь демонстрирует нам фантастический карнавал разнообразия и неповторимости творческих комбинаций!(прил.2) Мир неживой природы - это прежде всего мир симметрии, придающий его творениям устойчивость и красоту. Мир живой природы - это прежде всего мир гармонии, в которой действует закон Золотого сечения.

Цель моей работы – изучить понятие Золотое сечение, рассмотреть как Золотое сечение используется природой.

Из цели вытекают задачи:

Изучить литературу по данной теме;

Изучить понятие Золотое сечение», рассмотреть как «Золотое сечение» используется природой;

Источниками исследования явились:

  1. библиотечные фонды;
  2. интернет;
  3. библиотека моего научного руководителя.

Методы исследования:

  1. изучение материалов по теме;
  2. работа с классом;

Понятие Золотого сечения

Золото́е сече́ние (золотая пропорция, деление в крайнем и среднем отношении, гармоническое деление, φ) - деление отрезка на части в таком соотношении, при котором меньшая часть относится к большей, как большая ко всему в целом. Например, деление отрезка АС на две части таким образом, что большая его часть АВ относится к меньшей ВС так, как весь отрезок АС относится к АВ (т. е. |АВ| / |ВС| = |АС| / |АВ|). (прил.3) Эту пропорцию принято обозначать греческой буквой, φ и она равна: 1.618 (прил.4)

Отрезки золотой пропорции выражаются иррациональной бесконечной дробью 0,618..., если c принять за единицу, a = 0,382. Числа 0.618 и 0.382 являются коэффициентами последовательности Фибоначчи. На этой пропорции базируются основные геометрические фигуры.

Если вы подходите к пустой скамейке и садитесь на неё, то вы сядете не посередине скамейки (как-то нескромно, хотя встречаются и такие, ярко выраженные характеры) и, конечно, не на самый край. Если вы незаметно замерите длины, на которые своим телом разделили скамейку, то обнаружите, что отношение большего отрезка к меньшему равно отношению всей длины к большему отрезку и равно примерно 1,62. Это число, называемое Золотым сечением, входит в тройку самых известных иррациональных чисел, то есть таких чисел, десятичные представления которых бесконечны и непериодичны.

История Золотого сечения.

Принято считать, что понятие о Золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Kвадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.
Платон (прил.5) (427...347 гг. до н.э.) также знал о золотом делении. Его диалог «Тимей» посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления. В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида (прил.6) Во 2-й книге «Начал» дается геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж.Kампано из Наварры (III в.) сделал к переводу комментарии. Cекреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.
В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением, как в геометрии, так и в искусстве, особенно в архитектуре.
Лука Пачоли (прил.7) прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи (прил.8). В 1509 г. в Венеции была издана книга Луки Пачоли «Божественная пропорция» с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Kнига была восторженным гимном Золотой пропорции. Cреди многих достоинств Золотой пропорции монах Лука Пачоли не преминул назвать и ее «божественную суть» как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына)

Золотой прямоугольник

Золотое сечение очень широко используется в геометрии. Мы начнем наше путешествие по геометрическим свойствам Золотого сечения с Золотого прямоугольника, которые имеет следующее геометрическое определение. Золотым прямоугольником называется такой прямоугольник, в котором отношение большей стороны к меньшей равно золотой пропорции (прил.9) Рассмотрим случай простейшего Золотого прямоугольника, когда AB = и BC = 1.(прил.10)

Золотой прямоугольник обладает многими необычными свойствами. Отрезав от золотого прямоугольника квадрат, сторона которого равна меньшей стороне прямоугольника, мы снова получим Золотой прямоугольник меньших размеров. Продолжая отрезать квадраты, мы будем получать все меньшие и меньшие Золотые прямоугольники. Причем располагаться они будут по логарифмической спирали (прил.11), имеющей важное значение в математических моделях природных объектов (например, раковинах улиток). Полюс спирали лежит на пересечении диагоналей начального прямоугольника BD и первого отрезаемого вертикального AC. Причем, диагонали всех последующих уменьшающихся Золотых прямоугольников лежат на этих диагоналях (прил.12)

Золотое сечение было известно древним грекам. Вряд ли можно сомневаться в том, что некоторые древнегреческие архитекторы и скульпторы сознательно использовали его в своих творениях. Примером может служить хотя бы Парфенон. Именно это обстоятельство и имел в виду американский математик Марк Барр, когда предложил называть отношение двух отрезков, образующих золотое сечение, числом. Буква (фи) - первая буква в имени великого Фидия.

В то время как Золотое сечение и Золотой прямоугольник представляют статические формы естественной и сотворенной человеком красоты и деятельности, представление эстетически привлекательного динамизма, организованного движения роста и развития может быть выполнено только самой прекрасной формой во Вселенной - Золотой спиралью.

Золотая Спираль

Золотой прямоугольник можно использовать для построения Золотой спирали. Любой Золотой прямоугольник, можно разделить на квадрат и меньший Золотой прямоугольник. Этот процесс теоретически можно продолжать до бесконечности. Эти получающиеся прямоугольники, которые мы нарисовали и которые, как оказалось, скручиваются внутрь, промаркированы A, B, C, D, E, F и G (прил.13) Пунктирные линии, которые сами находятся в золотом соотношении одна к другой, рассекают прямоугольники по диагонали и точно обозначают теоретический центр, скручивающихся квадратов. Приблизительно из центральной точки мы можем начертить спираль (прил.14), соединяя точки пересечения каждого скручивающегося квадрата в порядке возрастания размера. Так как квадраты скручиваются внутрь и наружу, их точки соединения выписывают Золотую спираль. Для построения Золотой спирали может применяться такой же процесс, но с использованием скручивающихся треугольников.

В любой точке развития Золотой спирали, отношение длины дуги к ее диаметру равно 1.618. Диаметр и радиус в свою очередь соотносятся с диаметром и радиусом, отстоящих на угол в 90 градусов, с коэффициентом 1.618 (прил.15), Золотая спираль, которая является разновидностью логарифмической или изогональной спирали, не имеет границ и является

постоянной по форме. Из любой точки спирали можно двигаться бесконечно или в направлении внутрь, или наружу. Центральная часть логарифмической спирали, рассмотренная через микроскоп, имела бы тот же облик, что и самая широкая видимая ее часть на удалении многих световых лет.

Золотые спирали в живой природе

Золотые спирали широко распространены в биологическом мире. Как отмечалось выше, рога животных растут лишь с одного конца. Этот рост осуществляется по логарифмической спирали. В книге «Кривые линии в жизни» Т. Кук исследует различные виды спиралей, проявляющихся в рогах (прил.16) баранов, коз, антилоп и других рогатых животных. Среди множества спиралей он выбирает Золотую спираль (кривую гармонического возрастания) и рассматривает ее как символ эволюции и возрастания.

Спирали широко проявляют себя в живой природе. Спирально закручиваются усики растений (прил.17), по спирали происходит рост тканей в стволах деревьев, по спирали расположены семечки в подсолнечнике, спиральные движения (нутации) наблюдаются при росте корней и побегов. Очевидно, в этом проявляется наследственность организации растений, а ее корни следует искать на клеточном и молекулярном уровне.

Спиралевидную форму имеют большинство раковин (прил.18-19). Изучая конструкции раковин, ученые обратили внимание на целесообразность форм и поверхностей раковин: внутренняя поверхность гладкая, наружная - рифленая. Внутри покоится тело моллюска - внутренняя поверхность должна быть гладкой. Наружные ребра увеличивают жесткость раковины и, таким образом, повышают ее прочность. Форма раковин поражает своим совершенством и экономичностью средств, затраченных на ее создание. Идея спирали в раковинах выражена не приближенно, а в совершенной геометрической форме, в удивительно красивой, «отточенной» конструкции.

Русский ученый С.В. Петухов, изучая схемы строения опорно-двигательного аппарата у различных позвоночных животных, пришел к выводу о том, что построение их конечностей происходило под воздействием двух факторов: законов Золотой пропорции и приспособление организма к образу жизни:

«Законы Золотой пропорции определили основной план, основную идею конструкции конечностей, а конкретные условия существования каждого животного обусловили отклонения - флуктуации от этого плана все многообразие строения существующих форм».

Вездесущий филлотаксис .

Характерной чертой строения растений и их развития является

спиральность. Еще Гете, который был не только великим поэтом, но и

естествоиспытателем, считал спиральность одним из характерных признаков всех организмов, проявлением самой сокровенной сущности жизни. Спирально закручиваются усики растений, по спирали происходит рост ткани в стволах деревьев, по спирали расположены семечки в подсолнечнике, спиральные движения (нутации) наблюдаются при росте корней и побегов. Очевидно, в этом проявляется наследственность организации растений, а ее корни следует искать на клеточном и молекулярном уровнях.

Нет сомнений, что наследственная спиральность является одним из

основных свойств организмов, она отражает один из существенных признаков живого. На первый взгляд кажется, что в кристаллах неорганических веществ спиральность или винтовая структура отсутствуют. Однако более глубокие исследования показали, что винтовое расположение атомов наблюдается и в некоторых кристаллах и выражается в образовании так называемых винтовых дислокаций. Такие кристаллы состоят из единственной винтообразной изогнутой атомной плоскости. При каждом обороте вокруг оси эта плоскость поднимается

на один шаг винта, равный межатомному расстоянию. Следует добавить, что кристаллы с такой винтовой структурой обладают сверхпрочностью. От винтовой структуры молекул ДНК до закручивания усиков растений – таковы формы проявления спиральности на различных уровнях организации растений.

Отчетливо проявляется эта особенность организации растений в

закономерностях листорасположения.

Существует несколько способов листорасположения. В первом листья

побега располагаются строго один под другим, образуя вертикальные ряды – ортостихи. Условная спираль, соединяющая места расположения листьев на побеге, называется генетической, или основной спиралью, точнее, винтовой линией и делится на ряд листовых циклов. Генетическим этот винт называется потому, что расположение листьев в нем отвечает порядку появления в нем листьев. Проекция на плоскость листорасположения позволяет в долях окружности выразить угол расхождения листьев.

Рассмотренную закономерность расположения листьев, чешуек, семян

называют филлотаксисом. Установлено, что при расположении

листьев под идеальным углом ни один лист не будет располагаться точно над другим, чем создаются лучшие условия для фотосинтеза

Золотое сечение в природе.

Все, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах - рост вверх или расстилание по поверхности земли и закручивание по спирали.

Среди придорожных трав растет ничем не примечательное растение - цикорий (прил.20). Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий - 38, четвертый - 24 и т.д. Длина лепестков тоже подчинена Золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции Золотого сечения.

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции - длина ее хвоста так относится к длине остального тела, как 62 к 38 (прил.21).

Золотые пропорции в теле человека.

В 1855 г. немецкий исследователь Золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию Золотого сечения, объявив ее универсальной для всех явлений природы и искусства.

У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях «математической эстетикой».

Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришел к выводу, что Золотое сечение выражает средний статистический закон. Деление тела точкой пупа - важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к Золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6. У новорожденного пропорция составляет отношение 1: 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции Золотого сечения проявляются и в отношении других частей тела - длина плеча, предплечья и кисти, кисти и пальцев и т.д. (прил.22).

Мои исследования.

Я рассмотрела комнатные цветы в школе и дома и выделила те, которые растут по законам Золотого сечения (Приложения 23 - 29) и те, которые растут по законам Золотой спирали (Приложения 30 - 34).

В классе я провела следующее исследование – предложила ребятам сесть на скамейку. Все данные сведены в таблицу (Приложение 35), проведены расчеты отношений длины скамейки к большей части и большей части к меньшей. Получилось примерно 1,6. Это число и есть Золотое сечение.

Заключение.

Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и Золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип Золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе .

Список литературы

  1. Н. Васютинский “Золотая пропорция” –М.,”Молодая гвардия”, 1990
  2. А. Азевич “Двадцать уроков гармонии” –М., “Школа-Пресс”, 1998
  3. М. Гарднер “Математические головоломки и развлечения” –М., “Мир”, 1971
  4. Д. Пидоу “Геометрия и искусство” – М., “Мир”, 1989
  5. Энциклопедический словарь юного математика –М.,1989
  6. Журнал “Квант”, 1973, № 8
  7. Журнал “Математика в школе”, 1994, № 2, № 3

Существуют примеры, которые приближены к такому понятию, как золотое сечение, или тесно связаны с математикой. Но утверждение, что золотое отношение является чем-то универсальным, является преувеличением. Часто мы просто видим конкретный известный образец, где на самом деле наблюдается более общий случай.

Числа Фибоначчи

Когда речь идет о соотношении в природе, ученые применяют два основных научных явления,— числа Фибоначчи и золотые спирали.

Числа Фибоначчи образуют последовательность, где каждое из них является суммой двух предшествующих. Отношения двух соседних чисел Фибоначчи является приближением золотого сечения.

Это распределение часто касается растений, хотя не каждое из них произрастает именно по этому принципу. Поэтому мы не можем утверждать, что это их универсальное свойство.

Золотое сечение морской раковины

Какие еще можно привести примеры? Капуста романеско и раковина наутилуса следуют регулярным спиральным структурам, но не традиционной золотой спирали. Такая спираль создается путем увеличения радиуса по золотой пропорции каждые 90 градусов.

Оболочку наутилуса можно лучше описать как имеющую спираль, которая расширяется золотым соотношением через каждые 180 градусов. И даже это - все еще приближение.

Растения и золотое сечение

Например, если растения должны максимально контактировать с солнцем, то в идеале их листья должны расти с неповторяющимися углами. Наличие иррационального значения гарантирует это, поэтому спирали, которые мы видим в природе, являются следствием такого процесса. Все эти распределения следуют логарифмическим спиралям или общей математической форме золотой спирали.

Можно ли предположить, что существуют еще более глубокие математические связи между всеми живыми существами? Что это означает? Общий смысл заключается в том, что природа ленива и стремится осуществить наименьшее количество работы для получения максимального результата.

Самый простой способ сделать это — предложить простую модель роста, включающую поворот листьев под определенным углом и продолжение дальнейшего развития.

Математически это лучше описывается фракталами, повторяющимися шаблонами, которые могут привести к созданию логарифмических спиралей. Следует отметить, что с точки зрения физики спирали представляют собой конфигурации с низкой энергией.

Таким образом, математика действительно является языком вселенной, но ее язык намного богаче, чем просто золотой коэффициент.