Градиент концентрации. Диффузионный потенциал. Трансмембранный градиент концентрации калия Dx- градиент концентрации

Градиент концентрации или концентрационный градиент - это векторная физическая величина , характеризующая величину и направление наибольшего изменения концентрации какого-либо вещества в среде. Например, если рассмотреть две области с различной концентрацией какого-либо вещества, разделённые полупроницаемой мембраной, то градиент концентрации будет направлен из области меньшей концентрации вещества в область с большей его концентрацией.

Определение

Градиент концентрации направлен по пути l , соответствующему нормали к изоконцентрационной поверхности (полупроницаемой мембране). Значение концентрационного градиента \nabla C равно отношению элементарного изменения концентрации dC к элементарной длине пути dl :

\nabla C = \frac{dC}{dl}

При постоянном значении градиента концентрации C на длине пути l :

\nabla C = \frac{C_1 - C_2}{l}

Здесь C 1 и C 2 - начальное и конечное значение концентрации на длине пути l (нормали к изоконцентрационной поверхности).

Единицей измерения градиента концентрации в Международной системе единиц (СИ) является величина −4 (моль/м 4 или кг/м 4), а также её дольные или кратные производные.

См. также

Напишите отзыв о статье "Градиент концентрации"

Литература

  • Антонов В. Ф., Черныш А. М., Пасечник В. И. Биофизика - М .: ВЛАДОС, 2000, С. 35. ISBN 5-691-00338-0
  • Трифонов Е. В. - СПб.: 2011.

Отрывок, характеризующий Градиент концентрации

Я сообщил ему об этом. Внушите, пожалуйста, Леппиху, чтобы он обратил хорошенько внимание на то место, где он спустится в первый раз, чтобы не ошибиться и не попасть в руки врага. Необходимо, чтоб он соображал свои движения с движениями главнокомандующего.]
Возвращаясь домой из Воронцова и проезжая по Болотной площади, Пьер увидал толпу у Лобного места, остановился и слез с дрожек. Это была экзекуция французского повара, обвиненного в шпионстве. Экзекуция только что кончилась, и палач отвязывал от кобылы жалостно стонавшего толстого человека с рыжими бакенбардами, в синих чулках и зеленом камзоле. Другой преступник, худенький и бледный, стоял тут же. Оба, судя по лицам, были французы. С испуганно болезненным видом, подобным тому, который имел худой француз, Пьер протолкался сквозь толпу.
– Что это? Кто? За что? – спрашивал он. Но вниманье толпы – чиновников, мещан, купцов, мужиков, женщин в салопах и шубках – так было жадно сосредоточено на то, что происходило на Лобном месте, что никто не отвечал ему. Толстый человек поднялся, нахмурившись, пожал плечами и, очевидно, желая выразить твердость, стал, не глядя вокруг себя, надевать камзол; но вдруг губы его задрожали, и он заплакал, сам сердясь на себя, как плачут взрослые сангвинические люди. Толпа громко заговорила, как показалось Пьеру, – для того, чтобы заглушить в самой себе чувство жалости.
– Повар чей то княжеский…
– Что, мусью, видно, русский соус кисел французу пришелся… оскомину набил, – сказал сморщенный приказный, стоявший подле Пьера, в то время как француз заплакал. Приказный оглянулся вокруг себя, видимо, ожидая оценки своей шутки. Некоторые засмеялись, некоторые испуганно продолжали смотреть на палача, который раздевал другого.
Пьер засопел носом, сморщился и, быстро повернувшись, пошел назад к дрожкам, не переставая что то бормотать про себя в то время, как он шел и садился. В продолжение дороги он несколько раз вздрагивал и вскрикивал так громко, что кучер спрашивал его:
– Что прикажете?
– Куда ж ты едешь? – крикнул Пьер на кучера, выезжавшего на Лубянку.
– К главнокомандующему приказали, – отвечал кучер.

Предметная область: полимеры, синтетические волокна, каучук, резина

Наглядно представить образование в суспензии такого градиента концентрации довольно трудно, благодаря влиянию молекул растворителя. Явление это можно сравнить с поведением смеси двух газов при постоянных температуре и давлении, но с градиентом концентрации того и другого компонента. Рассмотрим плоскость, проведенную через такую газовую смесь перпендикулярно направлению градиента концентрации. Предположим, что концентрация компонента А выше в левой части плоскости и ниже в правой; распределение компонента В должно быть обратное. В единицу времени в левой части плоскости должно приходить в столкновение большее число молекул А, чем в правой; для молекул В справедливо обратное. Следовательно, больше молекул А будет проходить через плоскость слева направо и подобным же образом больше молекул В будет двигаться справа налево. В результате наступит уравнивание концентраций двух компонентов. Этот процесс представляет собой диффузию газов. Если теперь перейти к жидкой суспензии, в которой существует подобный же градиент концентрации взвешенных частичек, то ясно, что можно повторить предыдущее рассуждение, приложив его к движению твердых частичек и молекул растворителя через плоскость, проведенную под прямым углом к градиенту концентрации . Однако общее число частичек в единице объема не остается постоянным, и рассуждение соответственно следует изменить. Ясно, что число молекул растворителя, пересекающих плоскость в направлении от места с высокой концентрацией взвешенных частичек, будет меньше, чем в обратном направлении из-за присутствия частичек, преграждающих путь.

Закон Фика для диффузии в одном направлении связывает положительный поток частиц А с отрицательно направленным градиентом концентрации (постоянная плотность и малая концентрация частиц):

Как отмечалось выше, электроактивные вещества достигают поверхности электрода в результате: 1) диффузии, обусловленной градиентом концентрации между поверхностью электрода и объемом раствора, и 2) электрической миграции заряженных частиц, обусловленной градиентом потенциала между электродом и раствором. Этот миграционный ток необходимо исключить или уменьшить насколько возможно добавлением большого избытка инертного электролита, который не участвует в реакции на электроде. Возникающий при этом предельный ток будет только диффузионным током. Для того чтобы можно было исключить миграционный ток, концентрация инертного электролита должна быть по крайней мере в 50 раз больше концентрации электроактивного вещества.

При идеальном диффузионном токе электроактивное вещество достигает электрода только в результате диффузии, обусловленной градиентом концентрации, возникающим вследствие убыли вещества на электроде. Этот градиент существует на протяжении диффузионного слоя, где концентрация меняется от практически нулевой на поверхности электрода до концентрации, существующей в объеме раствора. Диффузионный ток можно определить по высоте волны на кривой сила тока - напряжение.

Основные законы диффузии были, как известно сформулированы Фиком. Первый закон Фика устанавливает связь между скоростью диффузионного потока / и градиентом концентрации С по расстоянию х от по-

Так как влага может быть удалена из глиняных изделий только путем испарения с поверхности, а из внутренних частей продвигается наружу только под действием силы, связаннойс градиентом концентрации *, то полное устранение усадочной деформации при сушке невозможно. Она может быть, однако, сведена к минимуму при достаточной продолжительности сушки и при соответствующем контроле температуры и влажности, необходимом для устранения неравномерного распределения влаги на поверхности. Такой контроль вместе с тепловым режимом лучше всего достигается при использовании противоточных сушилок, преимущественно туннельного типа. Чем более пластична смесь и более сложна форма, тем более тщательна должна быть сушка **.

При экстрагировании полимерного образца жидкостью с постепенно возрастающей растворяющей способностью в первую очередь растворяются более низкомолекулярные части, а потом остальные Улучшение растворяющей способности достигается путем изменения температуры или состава экстрагирующей жидкости Особенно хорошие результаты получаются при применении колонны с градиентом концентрации и температуры, когда происходит многократное растворение и осаждение полимера

При скорости вращения (4-6)-104 об/мин в ультрацентрифуге развивается центробежное ускорение, равное ~106 g. При таких проведения эксперимента - наблюдение за неравновесным процессом седиментации - называют скоростной седиментацией. Измерение положения границы 16 и ее смещения во времени проводится с помощью оптических схем (см. стр. 160), что позволяет рассчитать коэффициент седиментации : „ _ \ Лт_ _ 1 d In r

Вследствие теплового движения макромолекул в растворе происходит перемещение (диффузия) растворенного вещества в направлении от большей концентрации к меньшей. Если осторожно "наслоить" на поверхность раствора полимера с концентрацией С\ растворитель (Со), то постепенно граница раздела А-А будет размываться (рис. 1.11). Молекулы растворителя будут диффундировать в направлении х в раствор, а макромолекулы - в противоположном направлении , в слой растворителя. Изменение концентрации на отрезке dx называется градиентом концентрации. Скорость изменения концентрации в результате диффузии (скорость диффузии) описывается соотношением

При контакте катеонита вида (НМ)ж с разбавленным раствором сильного электролита М+А~ величина [М+] в ионите будет значительно больше, чем [М+] в растворе, а [А~~] - меньше [А~]. Вследствие того, что концентрация их в двух фазах различна, небольшие подвижные ионы будут стремиться выравнивать ее путем диффузии, а это приведет к нарушению электронейтральности раствора, к возникновению положительного пространственного заряда в растворе и отрицательного в ионите. В результате установится равновесие Доннана между градиентом концентрации, вызванным диффузией, и электростатическим потенциалом, препятствующим ей, и на границе катионит-раствор (рис. 191) Рис. 191. Схема распределения заря-возникнет разность потенциалов - доннановский потенциал

Диффузионные явления при формировании системы адгезив - субстрат весьма разообразны. К ним относятся поверхностная диффузия адгезива, самодиффузия в слое адгезива, иногда происходит объемная одно- или двусторонняя диффузия через границу раздела адгезив - субстрат. Кроме того, перечисленные процессы имеют различные механизмы . Например, различают активированную, полуактивированную и неактивированную диффузию. Ниже эти различные процессы будут рассмотрены более подробно. >> Часто полагают, что движущей силой диффузии является градиент концентрации. Однако перемещение, вызванное градиентом концентрации и приводящее к постепенной гомогенизации системы, не исчерпывает все возможные проявления этого сложного процесса. Весьма часто при диффузии происходит не выравнивание концентраций, а, наоборот, дальнейшее разделение компонентов системы. Поэтому более правильно считать, что движущей силой диффузии является разность термодинамических потенциалов, и перенос вещества путем диффузии сопровождается понижением свободной энергии системы. Выравнивание термодинамических потенциалов и приближение к термодинамическому равновесию достигается за счет теплового движения атомов (молекул). Термодинамический потенциал можно разложить на энергетическую и энтропийную составляющие. Механизм диффузии зависит от соотношения этих составляющих. В некоторых случаях внутренняя энергия системы при диффузии не изменяется, и

Градиент (в биологии) Градиент в биологии, закономерное количественное изменение морфологических или функциональных, в том числе и биохимических, свойств вдоль одной из осей тела организма (или органа) на любой стадии его развития. Примеры Г.: убывание содержания желтка в яйцах земноводных в направлении от вегетативного полюса к анимальному, неодинаковая чувствительность к ядам и красителям разных участков тела кишечнополостныхи червей. Г., отражающий убывание или возрастание интенсивности обмена веществ или др. физиологических показателей, называется физиологическим, или метаболическим. Пример физиологического Г.: падение способности к автоматическому сокращению участков сердца у позвоночных животных от венозного конца к аортальному. Место наивысшего проявления функции называется высшим уровнем Г., участок с наименьшим проявлением функции - уровнем. По представлениям американского учёного Ч. Чайлда, физиологический Г. - первопричина дифференцировки зародыша и интеграции взрослого организма, однако нередко Г. - не причина, а лишь следствие более широких биологических закономерностей развития. Л. В. Белоусов.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Градиент (в биологии)" в других словарях:

    - … Википедия

    - (лат. gradiens, gradientis шагающий, движущийся) в биологии величина, отражающая количественное изменение каких либо морфо??????P???или функциональных (в т. ч. физико химических) свойств вдоль одной из осей тела, органа или клетки … Большой медицинский словарь

    I Градиент (от лат. gradiens, род. падеж gradientis шагающий) Вектор, показывающий направление наискорейшего изменения некоторой величины, значение которой меняется от одной точки пространства к другой (см. Поля теория). Если величина… …

    Клин, клина (от греч. klíno ≈ наклоняю), в биологии, постепенное возрастание или убывание (количественный градиент) какого либо признака или свойства в популяциях в связи с выраженным изменением физико географических факторов. К. возникает обычно … Большая советская энциклопедия

    Приложение к статье Заслуженный изобретатель Российской Федерации Содержание 1 Республика Адыгея … Википедия

    Метод изучения вз ствия ядра с электрич. и магн. полями, создаваемыми его окружением, основанный на использовании Мессбауэра эффекта. Эти вз ствия вызывают сдвиги и расщепления уровней энергии ядра, что проявляется в сдвигах и расщеплениях… … Физическая энциклопедия

    Комплексная наука, изучающая особенности жизнедеятельности человека и других организмов в условиях космического полета. Основной задачей исследований в области космической биологии и медицины является разработка средств и методов жизнеобеспечения … Медицинская энциклопедия

    Биологическая физика, наука, изучающая физические и физико химические процессы, протекающие в живых организмах, а также ультраструктуру биологических систем на всех уровнях организации живой материи от субмолекулярного и молекулярного до… … Большая советская энциклопедия

    - (от Эмбрион и...Логия) буквально наука о зародыше, однако содержание её шире. Различают Э. животных и человека, обычно применяя к ней термин «Э.», и эмбриологию растений (См. Эмбриология растений). Э. животных и человека изучает … Большая советская энциклопедия

    Тилакоиды (зеленые) в хлоропласте Тилакоиды ограниченные мембраной компартменты внутри хлоропластов и цианобактерий. В тилакоидах происходят светозависимые реакции фотосинтеза … Википедия

Dx- градиент концентрации,

T – абсолютная температура

M моль

Jm = ––- ––––(- ––––) ; m - количество вещества

S × t м с Jm - (джей) плотность потока вещества.

Электрохимический потенциал –- величина, равная энергии Гиббса G на один моль данного вещества, помещенного в электрическом поле.

Свободная энергия Гиббса (или просто энергия Гиббса, или потенциал Гиббса, или термодинамический потенциал в узком смысле) - это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на вопрос о принципиальной возможности протекания химической реакции; это термодинамический потенциал следующего вида:

G = U + PV TS

где U - внутренняя энергия, P- давление, V- объём, T - абсолютная температура, S - энтропия.

(Термодинамическая энтропия S, часто просто именуемая энтропия, в химии и термодинамике является функцией состояния термодинамической системы)

Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.)

Понятие энергии Гиббса широко используется в термодинамике и химии.

Термодинамическая энтропия S, часто просто именуемая энтропия, в химии и термодинамике является функцией состояния термодинамической системы.

Для разбавленных растворов плотность потока вещества определяется уравнением Нернста-Планка.

d × C d ×φ

Jm= U ×R×T ––––- U×C×Z×F ––––- ;

d × x d × x

U подвижность частиц,

R- газовая постоянная 8,31 дж/моль,

dC

z заряд иона электролита,

F-число Фарадея 96500 кг/ моль,

dφ-потенциал электрического поля,

d φ

Существуют две причины переноса вещества при пассивном транспорте:градиент концентрации и градиент электрического потенциала . (Знаки минус перед градиентом показывают, что градиент концентрации вызывает перенос вещества от мест с большей концентрации к местам с меньшей концентрацией). Градиент электрического потенциала вызывает перенос положительных зарядов от мест с большим, к местам с меньшим потенциалом.

Может происходить пассивный перенос веществ от мест с меньшей концентрацией к местам большей концентрацией, (если второй член уравнения по модулю больше первого).

Если не электролиты Z=0 ; или отсутствует электрическое поле, то происходит простая диффузия – закон Фика.

Jm = - D × ––––;

D – коэффициент диффузии;

- - ––– градиент концентрации;

Диффузия – самопроизвольное перемещение веществ из мест с большей концентрацией в места с меньшей концентрацией вещества, вследствие хаотичного теплового движения молекул.


Диффузия вещества через липидный бислой вызывается градиентом концентрации в мембране. Коэффициент проницаемости мембраны зависит от свойств мембраны и переносимых веществ. (Если концентрации вещества у поверхности в мембране прямо пропорциональны концентрациям у поверхности вне мембраны).

P = - - ––- коэффициент проницаемости

K коэффициент распределения, который показывает соотношение концентрации вещества вне мембраны и внутри ее.

L толщина мембраны;

D – коэффициент диффузии;

Коэффициент проницаемости тем больше, чем больше коэффициент диффузии (чем меньше вязкость мембраны), чем тоньше мембрана и чем лучше вещество растворяется в мембране.

Хорошо проникают через мембрану неполярные вещества – органические жирные кислоты, плохо – полярные водорастворимые вещества: соли, основания, сахара, аминокислоты.

При тепловом движении образуются небольшие свободные плоскости между хвостами – называются клинки, через которые могут проникать полярные молекулы. Чем больше размер молекулы, тем меньше проницаемость мембраны для этого вещества. Избирательность переноса обеспечивается набором в мембране пор определенного радиуса, соответствующих размеру проникающей частицы.

Облегченная диффузия – происходит при участии молекул переносчиков. Переносчик ионов калия – валиномицин, который имеет форму манжетки; устлан внутри полярными группами, а снаружи –неполярными. Характерна высокая избирательность. Валиномицин образует комплекс с ионами калия, которые попадают внутрь манжетки, а также он растворим в липидной фазе мембраны, так как снаружи его молекула неполярна.

Молекулы валиномицина у поверхности мембраны захватывают ионы калия и переносят его через мембрану. Перенос может происходить в обе стороны.

Облегченная диффузия происходит от мест с большей концентрацией переносимого вещества к местам с меньшей концентрацией.

Отличия облегченной диффузии от простой:

1) перенос вещества с переносчиком происходит быстрее.

2) Облегченная диффузия обладает свойством насыщения, при увеличении концентрации с одной стороны мембраны, плотность потока возрастает до тех пор пока все молекулы переносчика не будут заняты

3) При облегченной диффузии наблюдается конкуренция переносимых веществ, когда переносчиком переносятся разные вещества; при этом одни вещества переносятся лучше чем другие и добавление одних веществ затрудняет транспорт др. Так из сахаров глюкоза переносится лучше чем фруктоза, фруктоза лучше, чем ксилоза, а ксилоза, лучше чем арабиноза.

4) Есть вещества, блокирующие облегченную диффузию – они образуют прочный комплекс с молекулами переносчик. Неподвижные молекулы – переносчики, фиксированные поперек мембраны передаются от молекулы к молекуле.

Фильтрация- движение раствора через поры в мембране под действием градиента давления. Скорость переноса при фильтрации подчиняется закону Пуазейля.

D v P1 – P2

- –– = - ––––––;