Что такое звёзды? Звезды Что называют звездой

Единицы измерения

Большинство звёздных характеристик как правило выражается в СИ , но также используется и СГС (например, светимость выражается в эргах в секунду). Масса, светимость и радиус обычно даются в соотношении с нашим Солнцем:

Для обозначения расстояния до звёзд приняты такие единицы как световой год и парсек

Большие расстояния, такие как радиус гигантских звёзд или большая полуось двойных звёздных систем часто выражаются с использованием астрономической единицы (а. е. ) - среднее расстояние между Землёй и Солнцем (150 млн км ).

Физические характеристики

Массы подавляющего большинства современных звёзд лежат в пределах от 0,071 масс Солнца (75 масс Юпитера) до 100-150 масс Солнца , возможно, первые звёзды были ещё более массивными. Температура в недрах звёзд достигает 10-12 млн .

Расстояние

Существуют множество способов определить расстояние до звезды. Но наиболее точный и основой для всех остальных методов является метод измерения параллаксов звёзд. Первым измерил расстояние до звезды Веги российский астроном Василий Яковлевич Струве в 1837 году. Определение параллаксов с поверхности Земли позволяет измерить расстояния до 100 парсек , а со специальных астрометрических спутников, таких как Hipparcos , - до 1000 пк. Если звезда входит в состав звездного скопления, то мы не сильно ошибемся, если примем расстояние до звезды равным расстоянию до скопления. Если звезда принадлежит к классу цефеид , то расстояние можно найти из зависимости период пульсации - абсолютная звездная величина. В основном, для определения расстояния до далеких звёзд используется фотометрия .

Масса

Достоверно определить массу звезды можно, только если она является компонентом двойной звезды . В этом случае массу можно вычислить, используя обобщенный третий закон Кеплера . Но даже при этом оценка погрешности составляет от 20 % до 60 % и, в значительной степени, зависит от погрешности определения расстояния до звезды. Во всех прочих случаях приходится определять массу по косвенным признакам, например, зависимости светимости и массы звезды. .

Химический состав

Крайне важной характеристикой является ее химический состав, как с точки зрения звезды, так и с точки зрения наблюдателя. И хотя доля элементов тяжелее гелия исчисляется не более чем несколько процентов, но они играют важную роль в жизни звезды. Благодаря им ядерные реакции могут замедляться или ускорятся, а это отразиться как на яркости, звезды, так и на цвете, так и на продолжительности жизни. Так чем больше металличность массивной звезды, тем меньше будет остаток при взрыве сверхновой. Наблюдатель, зная химический состав звезды, может довольно уверенно сказать время образования звезды. Так как все те трагические изменения, происходящие со звездой на протяжении ее жизни, не касаются поверхности звезды. Это всегда так мало массивных и средне массивных звезд, и почти всегда для массивных звезд.

Строение звёзд

Возникновение и эволюция звёзд

Звезда начинает свою жизнь как холодное разреженное облако межзвёздного газа, сжимающееся под действием собственного тяготения. При сжатии энергия гравитации переходит в тепло, и температура газовой глобулы возрастает. Когда температура в ядре достигает нескольких миллионов Кельвинов , начинаются термоядерные реакции и сжатие прекращается. В таком состоянии звезда пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга - Рассела , пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превратится в гелий, термоядерное горение водорода продолжается на периферии гелиевого ядра.

В этот период структура звезды начинает заметно меняться. Её светимость растёт, внешние слои расширяются, а внутрениие наоборот, сжимаются. И до поры до времени яркость звезды тоже понижается. Температура поверхности снижается - звезда становится красным гигантом . На ветви гигантов звезда проводит значительно меньше времени, чем на главной последовательности. Когда масса её изотермического гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; возрастающая при этом температура стимулирует термоядерное превращение гелия в более тяжёлые элементы.

Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию . В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды , звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

У звёзд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны , упакованные так плотно, что размер звезды измеряется километрами, а плотность в 280 трлн. раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Схема эволюции одиночных звёзд

малые массы 0.08M sun

умеренные массы
0.5M sun

массивные звёзды
8M sun

0.5M sun 3M sun 8M sun M * >10M sun

горение водорода в ядре

гелиевые бел. карлики

вырожд. He ядро

невырожд. He ядро

гелиевая вспышка

спокойное горение гелия в ядре

CO белый карлик

вырожд. CO ядро невырожд. CO ядро

углеродная дет.

горение углерода в ядре. CO в Fe

горение углерода в ядре. C в O, Ne, Si, Fe, Ni..

O,Ne,Mg… белый карлик или нейтронная звезда

чёрная дыра

Схема эволюции одиночных звёзд. По В. А. Батурину и И. В. Мироновой

Продолжительность эволюции звёзд

Классификация звёзд

Звёзды классифицируют по светимости, массе, температуре поверхности, химическому составу, особенностям спектра (спектральному классу) и кратности.

Кратные звёзды

Звёздные системы могут быть одиночными и кратными: двойными, тройными и большей кратности. В случае если в систему входит более десяти звёзд то принято её называть звёздным скоплением . Двойные (кратные) звёзды очень распространены. По некоторым оценкам более 70% звёзд в галактике кратные . Так среди 32 ближайших к Земле звёзд 12 кратных из которых 10 двойных в том числе и самая яркая из визуально наблюдаемых звёзд Сириус . В окрестностях 20 парсек от Солнечной системы из более 3000 звёзд, около половины - двойные звёзды всех типов

Обозначения звёзд

В прекрасно иллюстрированной Уранометрии (Uranometria, ) немецкого астронома И. Байера ( -), где изображены созвездия и связанные с их названиями легендарные фигуры, звёзды были впервые обозначены буквами греческого алфавита приблизительно в порядке убывания их блеска: α - ярчайшая звезда созвездия, β - вторая по блеску, и т. д. Когда не хватало букв греческого алфавита, Байер использовал латинский . Полное обозначение звезды состояло из упомянутой буквы и латинского названия созвездия. Например, Сириус - ярчайшая звезда в созвездии Большого Пса (Canis Major), поэтому его обозначают как α Canis Majoris, или сокращённо α CMa; Алголь - вторая по яркости звезда в Персее обозначается как β Persei, или β Per. Байер, однако, не всегда следовал введенному им правилу, и в байеровских обозначениях есть большое количество исключений.

Реакции термоядерного синтеза в недрах звёзд

Реакции термоядерного синтеза элементов - основной источник энергии большинства звёзд.

Самые известные звёзды

обозначение название

Вопрос о том, сколько звёзд на небе, волновал умы людей, как только первая звезда была замечена ими на небосклоне (причём задачу эту они решают до сих пор). Некоторые подсчёты астрономы всё-таки сделали, установив, что невооружённым взглядом на небе можно рассмотреть около 4,5 тыс. небесных светил, а в состав нашей галактики Млечный Путь входит около 150 млрд. звёзд. Учитывая, что Вселенная содержит несколько триллионов галактик, общее количество звёзд и созвездий, свет которых достигает земной поверхности, равняется септиллиону – и оценка эта лишь приблизительна.

Звезда — это огромных размеров газовый шар, излучающий свет и тепло (в этом состоит главное её отличие от планет, которые, будучи абсолютно тёмными телами, способны лишь отражать падающие на них световые лучи). Энергия порождает свет и тепло, возникшая в результате термоядерных реакций, происходящих внутри ядра: в отличие от планет, в состав которых входят как твёрдые, так и лёгкие элементы, небесные светила имеют в своем составе легкие частицы с незначительной примесью твёрдых веществ (например, Солнце почти на 74% состоит из водорода и на 25% – из гелия).

Температура небесных светил чрезвычайно раскалена: в результате большого количества термоядерных реакций температурные показатели звёздных поверхностей колеблются от 2 до 22 тыс. градусов Цельсия.

Поскольку вес даже самой маленькой звёздочки значительно превосходит массу самых крупных планет, небесные светила обладают достаточной гравитацией для того, чтобы удерживать вокруг себя все объекты меньших размеров, которые начинают крутиться вокруг них, образуя планетную систему (в нашем случае – Солнечную).

Вспыхивающие светила

Интересно, что в астрономии существует такое понятие, как «новые звёзды» – при этом речь идёт не о появлении новых небесных тел: на протяжении своего существования горячие небесные тела умеренной светимости периодически ярко вспыхивают, причём они настолько сильно начинают выделяться на небосводе, что люди в прежние времена считали, будто это рождаются новые звёзды.

В действительности анализ данных показал, что эти небесные светила существовали и раньше, но из-за вздутия поверхности (газообразной фотосферы) внезапно приобрели особую яркость, увеличив своё свечение в десятки тысяч раз, в результате чего создаётся впечатление, будто на небе появились новые звёзды. Возвращаясь к первоначальному уровню яркости, новые звёзды могут изменять свой блеск до 400 тыс. раз (при этом, если сама вспышка длится лишь несколько дней, их возврат к предыдущему состоянию нередко длится годами).

Жизнь небесных светил

Астрономы утверждают, что звёзды и созвездия образовываются до сих пор: согласно последним научным данным, лишь в нашей галактике ежегодно появляется около сорока новых небесных светил.

На первоначальном этапе своего образования новая звезда являет собой холодное разряженное облако межзвёздного газа, которое вращается вокруг своей галактики. Толчком для того чтобы в облаке начали происходить реакции, стимулирующие образование небесного светила, может послужить взорвавшаяся неподалёку сверхновая звезда (взрыв небесного тела в результате которого оно через некоторое время полностью разрушается).

Также вполне вероятными причинами может оказаться его столкновение с другим облаком или же на процесс могут повлиять столкнувшиеся друг с другом галактики, словом, всё, что способно воздействовать на газовое межзвёздное облако и заставить его сжиматься в шар под действием собственной гравитации.

Во время сжатия гравитационная энергия трансформируется в тепло в результате чего газовый шар чрезвычайно сильно нагревается. Когда температурные показатели внутри шара поднимаются до 15-20 К, начинают происходить термоядерные реакции в результате которых прекращается сжатие. Шар превращается в полноценное небесное светило, и на протяжении длительного времени внутри его ядра происходит преобразования водорода в гелий.



Когда запасы водорода заканчиваются, реакции останавливаются, формируется гелиевое ядро и структура небесного светила постепенно начинает изменяться: она становится более яркой, а ее внешние слои расширяются. После того как вес гелиевого ядра достигает максимальных показателей, небесное тело начинает уменьшаться, температура подниматься.

Когда температурные показатели достигают 100 млн. К, внутри ядра возобновляются термоядерные процессы, во время которых гелий преобразовывается в твёрдые металлы: гелий – углерод – кислород – кремний – железо (когда ядро становится железным, все реакции полностью прекращаются). В результате яркая звезда, увеличившись во сто крат, превращается в Красного гиганта.

Сколько именно проживёт то или иное светило, во многом зависит от размера: небесные тела малой величины сжигают запасы водорода очень медленно и вполне способны просуществовать миллиарды лет. Из-за недостаточной массы, в них не происходят реакций с участием гелия, и после остывания, они продолжают излучать небольшое количество электромагнитного спектра.


Жизнь светил средних параметров, среди которых и Солнце, составляет около 10 млрд. После этого периода их поверхностные слоя обычно превращаются в туманность с абсолютно безжизненным ядром внутри. Это ядро некоторое время спустя трансформируется в гелиевый белый карлик, диаметром ненамного больше Земли, затем темнеет и становится невидимым.

Если же небесное светило средних размеров было довольно крупное, оно сначала превращается в чёрную дыру, а затем на её месте вспыхивает сверхновая звезда.

А вот продолжительность существования сверхмассивных светил (напр., Полярная звезда) длится лишь несколько миллионов лет: в горячих и больших небесных телах водород сгорает чрезвычайно быстро. После того как огромное небесное тело заканчивает своё существование, на его месте происходит взрыв чрезвычайно огромной силы – и возникает сверхновая звезда.

Взрывы во Вселенной

Сверхновой звездой астрономы называют взрыв звезды, во время которого объект почти полностью разрушается. Через несколько лет объём сверхновой звезды увеличивается настолько, что она становится полупрозрачной и очень разреженной – и эти остатки можно увидеть ещё на протяжении нескольких тысяч лет, после чего она темнее и трансформируется в тело, полностью состоящее из нейтронов. Интересно, что явление это нередкое и в галактике происходит раз в тридцать лет.


Классификация

Большую часть видимых нам небесных светил относят к звёздам главной последовательности, то есть к небесным телам, внутри которых происходят термоядерные процессы, вызывающие преобразование водорода в гелий. Астрономы подразделяют их в зависимости от их цвета и температурных показателей на следующие классы звёзд:

  • Голубые, температура: 22 тыс. градусов Цельсия (класс О);
  • Бело-голубые, температура: 14 тыс. градусов Цельсия (класс В);
  • Белые, температура: 10 тыс. градусов Цельсия (класс А);
  • Бело-жёлтые, температура: 6,7 тыс. градусов Цельсия (класс F);
  • Жёлтые, температура: 5,5 тыс. градусов Цельсия (класс G);
  • Желто-оранжевые, температура: 3,8 тыс. градусов Цельсия (класс К);
  • Красные, температура: 1,8 тыс. градусов Цельсия (класс М).


Кроме светил главной последовательности, учёные выделяют следующие типы небесных светил:

  • Коричневые карлики – слишком малые небесные тела, чтобы внутри ядра мог начаться процесс преобразования водорода в гелий, поэтому они не являются полноценными звёздами. Сами по себе они чрезвычайно тусклые и учёные узнали об их существовании лишь по выделяемому ими инфракрасному излучению.
  • Красные гиганты и сверхгиганты – несмотря на свою низкую температуру (от 2,7 до 4,7 тыс. градусов Цельсия), это чрезвычайно яркая звезда, инфракрасное излучение которой достигает максимальных показателей.
  • Типа Вольфа-Райе – излучение отличается тем, что в нём присутствует ионизированный гелий, водород, углерод, кислород и азот. Это очень горячая и яркая звезда, являющаяся гелиевыми остатками огромных небесных светил, которые на определённом этапе развития скинули свою массу.
  • Типа Т Тельца – относятся к классу переменных звёзд, а также к таким классам, как F, G, K, M, . Имеют большой радиус, обладают высокой яркостью. Увидеть эти светила можно возле молекулярных облаков.
  • Яркие голубые переменные (второе название – переменные типа S Золотой Рыбы) – чрезвычайно яркие пульсирующие гипергиганты, чья яркость может превышать яркость Солнца в миллион раз и быть тяжелее в 150 раз. Считается, что небесное светило этого типа – самая яркая звезда во Вселенной (встречается, правда, очень редко).
  • Белые карлики – умирающие небесные светила, в которые преобразуются светила средних размеров;
  • Нейтронные звезды – также относятся к умирающим небесным телам, которые после гибели образуют более крупные светила, чем Солнце. Ядро в них уменьшается до тех пор, пока не преобразуется в нейтроны.


Путеводная нить моряков

Одной из наиболее известных небесных светил нашего небосклона является Полярная звезда из созвездия Малая Медведица, почти никогда не меняющая своего положения на небосклоне относительно определённой широты. В любое время года она указывает на север, из-за чего получила второе своё название – Северная звезда.

Естественно, легенда о том, что Полярная звезда не двигается, далека от истины: как и любое другое небесное тело, она совершает обороты. Северная звезда уникальна тем, что она ближе всех находится к северному полюсу – на расстоянии около одного градуса. А потому из-за угла наклона Полярная звезда кажется неподвижной, и вот уже на протяжении не одного тысячелетия служит великолепным ориентиром для моряков, пастухов, путешественников.

Надо заметить, что Северная звезда сместится, если наблюдатель изменит своё местоположение, так как полярная звезда изменяет свою высоту в зависимости от географической широты. Эта особенность давала возможность морякам, при измерении угла наклона между горизонтом и Полярной звездой, определять своё месторасположение.


В действительности Полярная звезда состоит из трёх объектов: недалеко от неё расположены две звезды-спутника, которые связаны с ней силами взаимного притяжения. При этом сама Полярная звезда относится к гигантам: её радиус почти в 50 раз больше радиуса Солнца, а светимость превышает в 2,5 тыс. раз. Это значит, что Северная звезда будет иметь крайне непродолжительную жизнь, а потому, несмотря на относительно молодой возраст (не более 70 млн. лет), Полярная звезда считается старой.

Интересно, что в списке самых ярких звёзд, Северная звезда находится на 46 месте – именно поэтому в городе на ночном небе, освещенном уличными фонарями, Полярная звезда практически никогда не видна.

Падающие светила

Порой, посмотрев на небо, можно увидеть, как по небу проносится упавшая звезда, яркая светящаяся точка – иногда одна, иногда несколько. Выглядит это так, будто звезда упала, а на ум сразу приходит легенда о том, что когда на глаза попадается упавшая звезда, нужно загадать желание – и оно непременно сбудется.

Мало кто задумывается, что в действительности – это метеориты, летящие к нашей планете из космоса, которые столкнувшись с атмосферой Земли, оказались настолько раскалены, что стали гореть и походить на яркую летящую звёздочку, получившую понятие «упавшая звезда». Как ни странно, явление это нередкое: если следить за небом постоянно, увидеть, как звезда упала, можно практически каждую ночь – на протяжении суток в атмосфере нашей планеты сгорает около сотни миллионов метеоров и около ста тонн очень мелких пылевых частиц.

В некоторые годы упавшая звезда показывается на небосклоне намного чаще, чем обычно, а если она при этом не одна, земляне имеют возможность наблюдать за метеорным потоком – несмотря на то, что кажется, будто звезда упала на поверхность нашей планеты, почти все небесные тела потока сгорают в атмосфере.

Появляются они в таком количестве, когда комета приближается к Солнцу, нагревается и частично разрушается, отдавая в космос определенное количество камней. Если проследить траекторию метеоритов, создаётся обманчивое впечатление, будто все они летят из одной точки: движутся они по параллельным траекториям и каждая упавшая звезда имеет свою.

Интересно, что многие из этих метеорных потоков возникают в один и тот же период года и земляне имеют возможность увидеть падение звезды довольно продолжительное время – от нескольких часов, до нескольких недель.

И только метеориты крупных размеров, обладающие достаточной массой, способны достигнуть земной поверхности, и если в это время такая звезда упала недалеко от населённого пункта, например, это случилось несколько лет назад в Челябинске, то это может вызвать чрезвычайно разрушительные последствия. Иногда упавшая звезда может быть не одна, что именуют метеоритным дождем.

Маленькие мерцающие точки в темном ночном небе. Они, казалось, были там всегда. Сотни миллионов человек любуются прекрасными картинами таинственного звездного неба и чтобы восхищаться этим небосводом, совсем не обязательно знать физические характеристики звезд - это красота, в ее первозданном состоянии. Загадочность всегда окружала звезды, именно это влекло к ним тысячи ученых, дилетантов, магов и просто романтиков. Человек связывал со звездным небом свою судьбу, настоящее, прошлое и грядущее. Но если рассматривать звёзды как физические объекты, естественный путь к их познанию лежит через измерения и сопоставление свойств. Чем собственно и занимается современная наука – астрономия.

Хотя де Сент-Экзюпери говорил: «Вы проинтегрировали звезды, и они утратили свою загадочность и романтичность…», мы продолжаем изучать загадочный мир, к которому принадлежим.

Что же представляли для древних культур звезды?

Может это души, а может и боги, может это слезы богов, но никто не мог представить, что это небесные тела, похожи на наше солнце.

По всему миру создавались культы Луны и Солнца, и некоторых известных созвездий и звезд. Люди поклонялись им.

Древние египтяне считали, что, когда люди разгадают природу звезд – наступит конец света. Другие народы верили, что жизнь на земле прекратиться, как только созвездие Гончих Псов догонит Большую Медведицу. Вифлеемская звезда знаменовала приход Иисуса Христа, а звезда Полынь оповестит о конце света.

Все это красноречиво говорит об огромном значении для людей знаний о звездном небе. Например, одним из величайших астрономов древности был самараканец Улугбек, точность его наблюдений и расчетов была потрясающей, а все это происходило во времена, когда еще никто не задумывался о телескопах…далеком XV веке. Ученые современности даже засомневались в подлинности этих данных. Все древние культуры имели огромные обсерватории, в которых мудрецы или жрецы, шаманы или магистры вели свои наблюдения. Такие знания были крайне необходимы. Составлялись календари, прогнозы, гороскопы. Одним из интереснейших открытий для ученых стали календари, составленные древними Майя, жрецы древнего Египта были также одними из первых астрономов.

Но для внесения ясности нужно отметить, что в те далекие времена науки астрономии еще не существовало, это было лишь как одна из составляющих астрологии. Древние большое внимание уделяли на связь судеб человека и происходящего в мире с состоянием звездного неба.

Тайны приоткрывались с огромным трудом, а ответов становилось все меньше по сравнению с вопросами, которые порождали эти же ответы.

Человек – очень интересное существо. Он накапливает знания, полученные за много тысячелетий, но вместе с тем иногда забывает, что знания намного важнее войн и разрушений – так теряется очень много и современной науке нужно все начинать сначала.

Для человека очень важным было знать что в этом мире есть нечнто вечное – как звезды, люди думали, что они существовали всегда и никогда не изменялись. Но и это мнение оказалось ошибочным, уже ни для кого не секрет, что картина звездного неба уже не такая как 4-5 тысяч лет назад, звезды появляются и исчезают, и «передвигаются» по небосводу. У них есть своя жизнь. Передвижение звезд Сириус, Процион и Арктур, относительно других заметил в 1718 г. английский астроном Эдмунд Галлей. Это были ярчайшие звезды в небе, сейчас же установлено что такое передвижение – закономерность для всех звезд. Но, например, о том, что звезды меняют свой блеск знали еще древние греки. Наука Нового времени показала, что многим звездам присуще это свойство.

Английский астроном Уильям Гершель в конце XVIII века предполагал, что все звезды излучают одинаковое количество света, а различие в видимой яркости обусловлены лишь не одинаковым удалением их от Земли. Но в 1837 г., когда измерили расстояние до ближайших звезд, его теория оказалась неверной.

Наша система оказалась в спокойной части галактики, вдали от горячих звезд и ярких светил, поэтому так долго ничего не удавалось узнать о звездах. Вследствие чего, ученые обратили взоры на ближайшую звезду – Солнце.

До середины XIX века считалось, что наружный слой Солнца горячий, а под ним скрывается холодная поверхность, изредка виднеющаяся через пятна – просветы в раскаленных солнечных облаках. Для объяснения этой гипотезы предполагалось, что на поверхность постоянно падали кометы и метеориты, которые передавали бы ему свою кинетическую энергию. Пробовали объяснить энерговыделение на Солнце привычным земным огнем – теплом, выделяющимся при химических реакциях. Но в таком случае весь запас солнечных «дров» выгорел бы за несколько тысяч лет. А даже древние знали, что светилу намного больше.

В 1853 г. немецкий физик Герман Гельмгольц предположил, что источник энергии звезд является их сжатие, ведь всем известно, что при сжатии газ нагревается. [Простым примером может служить обычный велосипедный насос, который нагревается при накачивании.] При этом на нагрев газа затрачивается не вся энергия, часть ее расходуется на излучение. Сжатие – это источник уже значительно более мощный, чем простое горение. Сжимающееся Солнце могло бы светить десятки миллионов лет. Но энергосистема Солнца непрерывно действует уже несколько миллиардов лет, и это факт уже доказан учеными.

Основными характеристиками звезды, которые могут быть тем или иным способом определены из наблюдений, это: мощность ее излучения (светимость), масса, радиус и химический состав атмосферы, а так же ее температура. При этом, зная еще некоторые дополнительные параметры можно рассчитать возраст звезды. Но к этому вернемся позже.

Жизненный путь звезды довольно сложен. В течение своей истории она разогревается до очень высоких температур и остывает до такой степени, что в сё атмосфере начинают образовываться пылинки. Звезда расширяется до грандиозных размеров, сравнимых с размерами орбиты Марса, и сжимается до нескольких десятков километров. Светимость её возрастает до огромных величин и падает почти до нуля.

Жизнь звезды не всегда протекает гладко. Картина её эволюции усложняется вращением, иногда очень быстрым, на пределе устойчивости (при быстром вращении центробежные силы стремятся разорвать звезду). Некоторые звёзды обладают скоростью вращения на поверхности 500 – 600 км/с. Для Солнца эта величина составляет около 2 км/с. Солнце – звезда относительно спокойная, но даже оно испытывает колебания с различными периодами, на его поверхности происходят взрывы и выбросы вещества. Активность некоторых других звёзд несравнимо выше. На определённых этапах своей эволюции звезда может стать переменной, начав регулярно менять свой блеск, сжиматься и опять расширяться. А иногда на звёздах происходят сильные взрывы. Когда взрываются самые массивные звёзды, их блеск на короткий срок может превысить блеск всех остальных звёзд галактики, вместе взятых.

В начале XX в., в основном благодаря трудам английского астрофизика Артура Эддингтона, окончательно сформировалось представление о звёздах как о раскалённых газовых шарах, заключающих в своих недрах источник энергии – термоядерный синтез ядер гелия из ядер водорода. Впоследствии выяснилось, что в звёздах могут синтезироваться и более тяжёлые химические элементы. Вещество, из которого сделана любая книга, также прошло через «термоядерную топку» и было выброшено в космическое пространство при взрыве породившей его звезды.

По современным представлениям, жизненный путь одиночной звезды определяется её начальной массой и химическим составом. Чему равна минимальная возможная масса звезды, с уверенностью мы сказать не можем. Дело в том, что маломассивные звёзды очень слабые объекты и наблюдать их довольно трудно. Теория звёздной эволюции утверждает, что в телах массой меньше чем семь-восемь сотых долей массы Солнца долговременные термоядерные реакции идти не могут. Эта величина близка к минимальной массе наблюдаемых звёзд. Их светимость меньше солнечной в десятки тысяч раз. Температура на поверхности подобных звёзд не превосходит 2 – 3 тыс. градусов. Одним из таких тусклых багрово-красных карликов является ближайшая к Солнцу звезда Проксима в созвездии Центавра.

В звёздах большой массы, напротив, эти реакции протекают с огромной скоростью. Если масса рождающейся звезды превышает 50 – 70 солнечных масс, то после загорания термоядерного топлива чрезвычайно интенсивное излучение своим давлением может просто сбросить излишек массы. Звёзды, масса которых близка к предельной, обнаружены, например, в туманности Тарантул в соседней с нами галактике Большое Магелланово Облако. Есть они и в нашей Галактике. Через несколько миллионов лет, а может быть и раньше, эти звёзды могут взорваться как сверхновые (так называют взрывающиеся звёзды с большой энергией вспышки).

История изучения химического состава звёзд начинается с середины XIX в. Ещё в 1835 г. французский философ Огюст Конт писал, что химический состав звёзд навсегда останется для нас тайной. Но вскоре был применён метод спектрального анализа, который теперь позволяет узнать из чего состоят не только Солнце и близкие звёзды, но и самые удалённые галактики и квазары. Спектральный анализ дал неоспоримые доказательства физического единства мира. На звёздах не обнаружено ни одного неизвестного химического элемента. Единственный элемент – гелий был открыт сначала на Солнце и лишь потом на Земле. Но неизвестные на Земле физические состояния вещества (сильная ионизация, вырождение) наблюдаются именно в атмосферах и недрах звёзд.

Наиболее обильным элементом в звёздах является водород. Приблизительно втрое меньше содержится в них гелия. Правда, говоря о химическом составе звёзд, чаще всего имеют в виду содержание элементов тяжелее гелия. Доля тяжёлых элементов невелика (около 2%), но они, по выражению американского астрофизика Дэвида Грея, подобно щепотке соли в тарелке супа, придают особый вкус работе исследователя звёзд. От их количества во многом зависят и размер, и температура, и светимость звезды.

После водорода и гелия на звёздах наиболее распространены те же элементы, которые преобладают в химическом составе Земли: кислород, углерод, азот, железо и др. Химический состав оказался различным у звёзд разного возраста. В самых старых звёздах доля элементов тяжелее гелия значительно меньше, чем на Солнце. В некоторых звёздах содержание железа меньше солнечного в сотни и тысячи раз. А вот звёзд, где этих элементов было бы больше, чем на Солнце, сравнительно немного. Эти звёзды (многие из них двойные), как правило, являются необычными и по другим параметрам: температуре, напряжённости магнитного поля, скорости вращения. Некоторые звёзды выделяются по содержанию какого-нибудь одного элемента или группы элементов. Таковы, например, бариевые или ртутно-марганцевые звёзды. Причины подобных аномалий пока малопонятны. На первый взгляд может показаться, что исследование этих малых добавок немного дает для понимания эволюции звезд. Но на самом деле это не так. Химические элементы тяжелее гелия образовались в результате термоядерных и ядерных реакций в недрах очень массивных звёзд, при вспышках новых и сверхновых звёзд предыдущих поколений. Изучение зависимости химического состава от возраста звёзд позволяет пролить свет на историю их образования в различные эпохи, на химическую эволюцию Вселенной в целом.

Важную роль в жизни звезды играет её магнитное поле. С магнитным полем связаны практически все проявления солнечной активности: пятна, вспышки, факелы и др. На звёздах, магнитное поле которых значительно сильнее солнечного, эти процессы протекают с большей интенсивностью. В частности, переменность блеска некоторых таких звёзд объясняют появлением пятен, аналогичных солнечным, но закрывающих десятки процентов их поверхности. Однако физические механизмы, обусловливающие активность звёзд, ещё не до конца изучены. Наибольшей интенсивности магнитные поля достигают на компактных звёздных остатках – белых карликах и особенно нейтронных звёздах.

За период немногим более двух столетий представление о звёздах изменилось кардинально. Из непостижимо далёких и равнодушных светящихся точек на небе они превратились в предмет всестороннего физического исследования. Как бы отвечая на упрек де Сент-Экзюпери, взгляд на эту проблему выразил американский физик Ричард Фейнман: «Поэты утверждают, что наука лишает звёзды красоты. Для нее звезды – просто газовые шары. Совсем не просто. Я тоже любуюсь звёздами и чувствую их красоту. Вот только кто из нас видит больше?»

Благодаря развитию наблюдательных технологий астрономы получили возможность исследовать не только видимое, но и невидимое глазу излучение звезд. Сейчас уже многое известно об их строении и эволюции, хотя немало остается и непонятного.

Еще впереди то время, когда исполниться мечта создателя современной науки о звездах Артура Эддингтона и мы, наконец «сможем понять такую простую вещь, как звезда».

Каждый раз, когда я смотрю на звезды, меня занимает один очень интересный вопрос. Нет, я не много думаю о том, что там вдалеке. Хотя, конечно, это тоже интересно. Чаще всего я размышляю о наших предках - что они думали когда смотрели на ночное небо? Только представьте - вы живете, например, в 500 году до н. э. Как таковой, астрономии тогда еще не было, и люди не имели не малейшего представления о мироустройстве. Как бы вы себе объяснили, что это за "светилы" над вами? :)

В этом рассказе я хотел бы поговорить, из чего состоят звезды.

Как можно узнать, из чего состоят звезды

Если никогда не интересоваться физикой и астрономией, то, кажется, что это невозможно. Ведь эти светила находятся так далеко, что определить их состав не представляется возможным. Как можно понять по небольшому огоньку в небе, из чего он состоит? Оказывается, можно!

Подобные исследования проводятся на основе изучения способности атомов по-разному п ринимать свет, на различных частотах. Таким образом, производится анализ показателей поглощения и излучения звезд , по которому уже можно судить о составе звезды.


Как указано на картинке выше, подобные исследования дают представление не только о составе звезд, но и о других химических и физических показателях, например, температуре и давлении.

Из чего состоят звезды

Химический состав всех звезд примерно похож, и солнце не исключение. Итак:

  • Основу всегда составляет водород . Его процентное содержание - около 73%.
  • На втором месте находится гел ий , его доля обычно составляет 25% . Итак, на эти два вещества приходится около 98% всего химического состава звезд .
  • Также в их состав входят многие тяжелые вещества в гораздо меньшем процентном соотношении: кислород, углерод, различные металлы и т. д.

Все эти вещества не располагаются диффузно в светилах, т. е. есть определенные законы, по которым вещества находятся в определенной части. Все тяжелые элементы, особенно металлы, находятся в центре звезды - ядре . На периферии располагаются остальные, более легкие вещества (гелий и водород) . Однако, т. к. гелий - тяжелее водорода, то он также будет располагаться ближе к центру звезды.

Если звезд а - это горячий сгусток газа , внутри которого постоянно происходит подобие взрыва с выбросом энергии и вещества, то почему с планеты звездный свет мерцает ? Оказывается, всё дело в атмосфере Земли . В воздухе перманентно возникают воздушные потоки , а также атмосфера планеты неоднородна , из-за чего падающие лучи искажаются - до атмосферы Земли идут прямолинейно , а входя в неё преломляются , превращаясь в некий зигзаг или волну с плавными изгибами . Мы смотрим на небо с одной точки (точнее точкой является наш глаз), которая улавливает этот то "теряющийся", то вновь появляющийся сигнал. Легко сбиться со счёта! Примечательно, что учёные выявили, сколько звёзд можно увидеть на ночном небе - около 6000 сияющих точек, 3000 с одного полушария и столько же с другого. Жаль только, что люди нечасто поднимают голову, чтобы увидеть целую плеяду ярких небесных тел , а выхлопы и городской смог полностью заполоняют доступ любознательных людей к ночному небу. Однажды остановка работы некоторых заводов в одном из штатов привела к тому, что перед людьми открылось наполненная звёздами черная картина . Люди, не видя раньше подобного зрелища, в панике начали звонить в службу чрезвычайных ситуаций, утверждая, что видят в небе НЛО. Некоторые всерьёз подумали, что началось инопланетное вторжение.

Живое пламя

Звёзды - не просто генератор газа и энергии , они схожи с живым организмом. В астрономии существует такое понятие, как звёздная эволюция . Звёзды рождаются из газово-пылевых сгустков, развиваются и растут . После отбытия своего жизненного цикла, в звезде начинают заканчиваться элементы . Первым кончается водород , следствием чего является усиленный синтез углерода и гелия - звезда увеличивается в размере. Далее она начинает активно терять газ , рассеивая его по космосу, также продолжая расти. Под конец своего развития звезда может превратиться:


Свет из прошлого

Поток света , или фотонов (частиц света) имеет огромную скорость - около 300 тысяч километров в секунду . Эту скорость невозможно уловить невооружённым взглядом: на Земле распространение света происходит быстро из-за того, что обычное расстояние, которое мы наблюдаем, незначительно для такой скорости. Но в масштабах космоса-то всё происходит иначе - свету, чтобы пройти расстояние от Солнца до Земли, требуется 8 минут . То есть, мы наблюдаем свет, который появился несколько минут назад ; и если Солнце потухнет вмиг (не бойтесь, такого не может произойти), то мы это поймём только спустя 8 минут, пока остатки солнечного света не дойдут до нас. Другие видимые нам звёзды находятся намного дальше Солнца , и световой поток от них доходил до нас миллионы лет . Мы видим свет из далёкого прошлого . Может, эти звёзды давно перешли на новый этап развития, может, слились с другими. Чтобы хоть немного приблизить будущее, существуют мощные телескопы . С их помощью возможно преодолеть громадное расстояние и сократить время прибытия света - увидеть прошлое, но не такое дальнее, как мы видим невооружённым глазом. Этот факт подтолкнул учёных на пару мысленных экспериментов :


Звёзды - это наши проводники в прошлое . Они открывают нам загадки древности, рассказывают вечные легенды тёмного и холодного космоса. Звёздный свет - путь, способный провести человека от Земли до дальних планет, галактик, до самого края Вселенной . Человечеству ещё многое предстоит узнать об этих сияющих небесных телах и кто знает, может быть мы застанем открытие новой звёздной тайны .